Further Maths Revision Paper 1

This paper consists of 5 questions covering CP1, CP2, FP1 and FM1. (AS Further Maths: Q1, 2 and 3)

1
Solve

$$
\frac{4 x+1}{x+2} \leqslant \frac{5}{x-3}, \quad x \neq-2, x \neq 3
$$

The tangent at a point P on the parabola $y^{2}=4 a x$ meets the directrix at Q.
The line through Q parallel to the x-axis meets the normal at P at the point R.
Find the equation of the locus of R.

3

Prove by induction that

$$
2^{n+2}+3^{2 n+1}
$$

is divisble by 7 for all positive integers.

If $x=e^{t}$
show that

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}-4 y=16 \tag{1}
\end{equation*}
$$

reduces to

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-4 y=16
$$

Hence find the general solution for the equation (1)

Figure 1

Figure 1 represents the plan view of a smooth horizontal floor, where $A B$ and $B C$ are fixed vertical walls.
The vector $\overrightarrow{A B}$ is in the direction of \mathbf{i} and the vector $\overrightarrow{B C}$ is in the direction of $(3 \mathbf{i}+2 \mathbf{j})$.
A small ball P is projected across the floor towards $A B$. immediately before the impact with $A B$, the velocity of P is $(3 \mathbf{i}-4 \mathbf{j}) \mathrm{ms}^{-1}$.
The ball bounces off $A B$ and then hits $B C$.
The ball is modelled as a particle.
The coefficient of restitution between P and $A B$ is $\frac{1}{4}$.
The coefficient of restitution between P and $B C$ is e.
Given that after both impacts the velocity of P is parallel to $(31 \mathbf{i}+25 \mathbf{j})$ find:
(a) the value of e;
(b) the speed of P after both impacts.

